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SUMMARY

We present an iteration procedure to locate the minimum
of a continuously differentiable strictly convex function over
the unbounded simplex in Euclidean n-space, and we prove that
the procedure converges to the unique minimum. This procedure
is constructed to facilitate its adaptation to machine program-
ming. Applications of this procedure to maximum likelihood

estimation in certain non-parametric cases are mentioned.
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1. INTRODUCTION

Recently, there have occurred some applications of the
problem of minimizing a convex function, say f, defined on

Euclidean n-space Rn’ over the unbounded simplex

S = {(x)seresx ) ER 2 X} <Xy € ven < x )

|t

Special cases of this problem arise in the maximum likelihood
estimation of parameters subject to known constraints. These
problems have been treated by Brunk et al in a series of

papers [1], [2], [3]. They also arise in the maximum likelihood
estimation in certain non-parametric situations as treated by

Marshall and Proschan [5].

The method used in the cases cited requires that the

function f be of the form

n

(1.1) E(xppeeesx ) = 21: £,(x))

where each fi is convex over Rl.

Let u(j-r, j+s) be the value of x which minimizes
j+p-1

Z fi(x). Then the minimizing point of f over the
i=j-r+l

-r
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simplex S, call it (al,...,an), is known to be given by

a = MAX min u(j-r,j+s)
j r>1 s>1 ’

This straightforward method works for non-parametric estimates

in the case of densities with increasing failure rates.

The general problem of minimizing a function over compact subsets
of Rn in the case the function is strictly convex in each coordinate
and continuously differentiable and assumes the minimum in the interior
has been treated by Warga [6]. He proposes the use of an iteration
procedure of minimizing successively one coordinate after another beginning
at any point.

If f 1s convex and continuously differentiable in Rn and is to be

minimized over the bounded simplex

Sy = ((xppeeenx ) e R 2 =M< x) < vee < x < M)

1’

for some M > 0, then one may utilize the Warga iteration prucedure to
find the minimum of f over the n-fold Cartesian product of the interval
* *
[-M,M]. Let it be (al,...,an). Then knowing tha result (proved in [3])

*
that if a

*
J > aj+1’ then the point (al,...,an) which minimizes f over

Sn must have a, = a . We can, in at most n applications of the

h| i+l
Warga procedure, obtain the minimum over SM'
The problem which arises in the determianation oi the nonparametric

maximum likeliiiood estimat.: in the case the density has



a convex failure rate is that of minimizing a convex function
(which does not have property (l.1)) over the unbounded simplex.
The belief which prompted this effort was that something could
be found which was alternate to the method above for some M

sufficiently large.

2. THE ITERATION OPERATOR

Let f be a function which is to be minimized over the

convex set S. We assume that f satisfies the following:

1° For any a,ReS and te(0,1)
f(ta + (1-t)B) < tf(a) + (1-t)f(B),

and letting &, be the vector which is zero in every

i

coordinate except the ith which is unity, we have

f(a + t§i) - f(a)
D .f(a) = 1lim ’
J t+0 t

the partial derivative with respect to the jth coordinate,

exists and is continuous for j = 1,...,n.

2° If {ai} is a sequence of points in S such that at

least one coordinate, say the jth, has the property that

lim sup Ia;I = © then 1lim sup f(ui) = o,

i » b G

Now from 1° it follows that f 1s a strictly convex continuously

differentiable function and from 2° that a minimizing value of f over
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S exists which by the strict convexity must be unique.

For any vector a ¢ S and any two intcgers j,k such that

J>1, k<n and k > j we make the notational convention
for x a real number

(2.1) (x:v,k,a) = a + x(dj +eeed Gk)

where 61 = (611, 621""’6ni) with Gji the Kronecker delta.

Now if we use A as ti.e difference operator AaJ = aj = uj-l’

then =la, < x < la implies that (x:j,k,a) € S. Let the value

3 k+1
of x ¢ {-Aaj, Aak+1] which minimizes f(x:j,k,a) be denoted by

p(j9k90)-
LEMMA 1: For given integers such that j > 1, k <n,

k > j we have

p(j,k,a) 1s a continuous function of a on S.

PROJF: Let j,k as required and o € S be fixed arbitrarily.

To show continuity, let {a"} be a sequence of points in S such

that o > a ¢ . If P, " p(j,k,an) does not converge to

p(j,k,a), then by compactness there is a subsequent such that

pni * Py * p(J,k,0)

Then for that

Take x ¢ (-Aa,,Aa

CASE 1 -Aaj < Aak+l'

x there is an N sufficiently large that

3 k+1) :



n n
i 1]
X eNn -Aa Aa
{>N [ j°? k+1

and then for i1 > N, we have

n n
f(pn 2j ok g0 i) < f(x:3,k,a i).
i

Now letting 1 + «», we have by continuity of f that

f(Po:j yK,at) E f(x:] ykya).

This inequality holds for arbitrary x ¢ (-AaJ,Aak+l) and by

continuity of f must hold for all x 1in the closed interval.
Hence, by strict convexity, it must follow that Po is the

minimizing value and by definition = p(j,k,a) which is a

Po
contradiction.
CASE 11 -AuJ - A°k+l' Since Aai‘i 0, we must have

. n
AaJ 'Aak+1 0O and since a + a it must follow that

IAa?i + |Aa:+1| -0 as n + =, But -Aa?

hence p -+ 0 = p(j,k,a). This completes the proof.
n

n
SR S A°k+1 and

We now define the transformations

(2.2) Ajk(a) = o+ p(j,kya)(8, +e--+ Gk) for 1 <j <k <n.

3

Following immediately from Lemma 1 we make the obvious

REMARK: For each j,k as prescribed,the transformation Ajk is

a continuous map from S into S.

4
N
é

>

eppreee e TR S

s




ln turn, we set

Al = A o.oo Ajj LI ) A22A11

nn
(2.3) G LT Ao ety
An - Aln

where juxtaposition indicates composition of the transformations.

Finally, we set

(2.44) B = An-~' A2A1'

Since the composition of continuous functions is continuous,

we have

THEOREM 1: The transformation B 1is a continuous map of

S 1into itself.

We now prove

LEMMA 2: If Ajk(a) $# a, then f(Ajk(a)) < f(a).

PROOF: By definition

f(A,, (a)) < f(a + x61+--~+x6k) for all «x a[-Aaj,Aak+l]

jk

and by strict convexity we obtain equality iff x = p(j,k,a).

Since always Oe:[—Aaj,Aak+1] for a € S we have f(Ajk(a)) < f(a)

with equality iff p(j,k,a) = O. Clearly then p(j,k,a) ¢ 0




implies f(AJk(a))< f(a) and by equation 2.3 it follows that

AJk(a) ¢ a 1ff p(J,k,a) # 0. This completes the proof.

3. PROOF OF CONVERGENCE
Pcfinition: A point a € S 1is a fixed point of B 1iff
B(a) = a.

One checks easily that the property of the Ajk's expressed in

Lemma 2 is preserved under composition. Thus, we have

THEOREM 2: B 1is a transformation defined from S into s

such that if a 1is not fixed, then f(Ba) < f(a).
There follows immediately

THEOREM 3: If u 1is the unique minimum of f over S,

then py 1is a fixed point of B.

PROOF: Otherwise, by Theorem 2 B(u) ¢ u which would

contradict the fact that u was the minimum.

We now derive some properties of this minimum which shall be

needed subsequently. We define
(3.1)  3f(a:B-a) = lim ¢[f(a + té=ta) - £(a)]

t+oO

and as we know we have

n
(3.2) = 2 (8,-a,)D £(a).
1

In the above, we have followed the notation of [4].



LEMMA 3: Suppose the minimum u of f 1s such that

Bjap Mg Tt Ty gy for 3 <k
then it follows that for j <r <k
k k
(3.4.1) 8f(u:2 61) - Z Dif(u) >0,
r r

r r
(3.4.2)  :Y §) = 3 D E(W) <0

h| 3
and
k k
(3.4.3) af(u:Z 61) = E Dif(u) = 0
h| b)

PROOF: If y 1is any point in S, then

n
(3.5) 3 (uiy-u) = 37 (v,-u)D f(u) > 0,
1

otherwise u would not be the minimum since there would exist a

t > O such that

%{f[u + t(y-w)] - £ -0

which would be a contradiction to u being the minimum. Now take

uj-x 1= j,..0,r
Yi =
ui i otherwise.
T ———— e B =




For some x > O such that y e¢ S 1t follows

n r
;(Yi-ui)Dif(u) - -xaf(u:? 6,) > 0.

This proves (3.4.2). The other case is done similarly. The
proof of (3.4.3) follows immediately as a corollary since we

must have the l.h.s. both > 0 and < O.
We can now state the crucial

THEOREM 4: If a 1is not the minimum of f over S, then

is not a fixed point of B.

By (3.3) we have

r
(3.6) f (aspu-a) = Zl (u.1 -aj)Djf(u) < 0.
j:

If we consider the intervals of indices across which ai is
constant, say,

£ <i<22,...,zNii<9.N+l-n+1

we may rewrite (3.6) as

LI ok T
(3.7) of (a:pu-a) =Z Z (v ,~a, )D,f(a) < O.
A 11 3
i=1 =t

Since o 1is a fixed point of B we must have over each interval

in which ai is constant,
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(3.7.1) If(asd, +ec+6 ) =0 J = 0,...,m

Ej -1+2j+l

otherwise a would not be a fixed point of A .

Moreover, for every j = 0,...,m, we must have for each

EJ <k < 2j+1
(3.7.2) af(azé2 +..-+6k) <0
]
(3.7.3) 8f(a:6k+---+6_1+2 ) >0

j+1
otherwise, a would not be fixed for the appropriate AJ K S
]

Since the sum in (3.7) is negative, it follows that at least
one of the summands must be negative. Suppose without loss of
generality that it is the first. If we also consider the
subintervals of 21 <3< 12 across which uj is constant,
say for some N > 1,

L. =k, <j <k

I Ko 2 Ji =k

2° i R m - m+1 2°

We have from (3.7) by using (3.2) that

m
(3.7.4) E (u, -a, )If(azd, +e-+6_ ) <oO.
- k8 ky L4k,

If u, 1s constant across £, <j <1, (i.e. m=1 Iin

h|
(3.7.4)), then we have a contradiction with (3.7.1). Thus, we
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assume m > 1. Because My is an increasing function of 1
1
it must cross a, at most once. Thus, we can write (3.7.4)
1
as
(3.7.5) 0> E E )af(u 6k1+--o+6_1+ki+1).
i=s+l]

On the right-hand side of (3.7.5) we label the first sum I and

the second Il where
(3.7.6)

< a for 1 =1,...,s

> a for i = s+1,...,m

and perhaps one of the summations is vacuous.

Consider the first term of I keeping (3.7.2) and (3.7.6) in

mind. Now

(u - a, Yof(a:d +---+6_ ) > 0.
kl El k1 1+k2
Since M is an increasing function of 1, we have also
i
0 < (u -a )af(a 6 S KL ¥4 ) < (y, =-a, )of(a:d o o ot ).
k2 1 1 1+k2 kl 21 kl 1+k2

By combining the terms i = 1,2, we have

I> (u, =a_  )If(a:b, ++++6 )
g Ko L1 Ky 1+,

+ (y, -a, )of(a:l, +-++46 ).
kz 11 kl -1+k3



i

- 12 -

Repeating the argument s times we see that eventually

we show

I> (u, -a, )of(as§, ++e+6_ ) > 0.
ks 21 kl l+ks+1

A similar argument holds for showing II > O and thus we

have a contradiction to (3.7.5).
We now have

THEOREM 5: For any a ¢ S the sequence {B"(a)}

converges to a fixed point of f.

PROOF: Let an = Bn(a) for n=1,2,... then the
sequence {a"} has a convergent subsequence since it is from
the set {8 € S:f(B) < f(a)} which is closed and bounded by
virtue of 2° and being a subset of Euclidean n-space is compact.
Set . = f(an). The sequence {an} is a decreasing sequence
of real numbers bounded below and therefore converges to ags
say. Clearly all limit points of {a"} have the same f value,

namely aye

"
Let a + Yy, say, then

n n

by = £(1) < fB(a ) < £(a ")

and letting k > « we have



= 13 =

lim

n
P B ) = ().

But by Theorem 1, B 1is continuous and by assumption f |is

also thus we have

"
lim fB(a 7)) = fB(Y)

k > o

and fB(y) = f(y) and Yy 1is a fixed point which is the unique

minimum.
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